Bayesian nonparametric (BNP) methods can be used to flexibly model joint or conditional distributions, as well as functional relationships. These methods, along with causal and/or missingness assumptions, can be used with the g-formula to infer causal effects.
Read More
Bayesian nonparametric (BNP) methods can be used to flexibly model joint or conditional distributions, as well as functional relationships. These methods, along with causal and/or missingness assumptions, can be used with the g-formula to infer causal effects.
Read Less