This book offers a coherent and comprehensive approach to feature subset selection in the scope of classification problems, explaining the foundations, real application problems and the challenges of feature selection for high-dimensional data. The authors first focus on the analysis and synthesis of feature selection algorithms, presenting a comprehensive review of basic concepts and experimental results of the most well-known algorithms. They then address different real scenarios with high-dimensional data, showing the ...
Read More
This book offers a coherent and comprehensive approach to feature subset selection in the scope of classification problems, explaining the foundations, real application problems and the challenges of feature selection for high-dimensional data. The authors first focus on the analysis and synthesis of feature selection algorithms, presenting a comprehensive review of basic concepts and experimental results of the most well-known algorithms. They then address different real scenarios with high-dimensional data, showing the use of feature selection algorithms in different contexts with different requirements and information: microarray data, intrusion detection, tear film lipid layer classification and cost-based features. The book then delves into the scenario of big dimension, paying attention to important problems under high-dimensional spaces, such as scalability, distributed processing and real-time processing, scenarios that open up new and interesting challenges for researchers. The book is useful for practitioners, researchers and graduate students in the areas of machine learning and data mining.
Read Less
Add this copy of Feature Selection for High-Dimensional Data to cart. $51.65, new condition, Sold by Ingram Customer Returns Center rated 5.0 out of 5 stars, ships from NV, USA, published 2016 by Springer.
Add this copy of Feature Selection for High-Dimensional Data to cart. $51.65, new condition, Sold by Ingram Customer Returns Center rated 5.0 out of 5 stars, ships from NV, USA, published 2015 by Springer.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
New. Print on demand Sewn binding. Cloth over boards. 147 p. Contains: Unspecified, Tables, black & white, Tables, color. Artificial Intelligence: Foundations, Theory, and Algorithms.
Add this copy of Feature Selection for High-Dimensional Data to cart. $71.22, new condition, Sold by Ria Christie Books rated 4.0 out of 5 stars, ships from Uxbridge, MIDDLESEX, UNITED KINGDOM, published 2016 by Springer.