When compared to classical sciences such as math, with roots in prehistory, and physics, with roots in antiquity, geographical information science (GISci) is the new kid on the block. Its theoretical foundations are therefore still developing and data quality and uncertainty modeling for spatial data and spatial analysis is an important branch of that theory. Principles of Modeling Uncertainties in Spatial Data and Spatial Analyses outlines the foundational principles and supplies a firm grasp of the disciplines' ...
Read More
When compared to classical sciences such as math, with roots in prehistory, and physics, with roots in antiquity, geographical information science (GISci) is the new kid on the block. Its theoretical foundations are therefore still developing and data quality and uncertainty modeling for spatial data and spatial analysis is an important branch of that theory. Principles of Modeling Uncertainties in Spatial Data and Spatial Analyses outlines the foundational principles and supplies a firm grasp of the disciplines' theoretical underpinnings. Comprehensive, Systematic Review of Methods for Handling Uncertainties The book summarizes the principles of modeling uncertainty of spatial data and spatial analysis, and then introduces the developed methods for handling uncertainties in spatial data and modeling uncertainties in spatial models. Building on this foundation, the book goes on to explore modeling uncertainties in spatial analyses and describe methods for presentation of data as quality information. Progressing from basic to advanced topics, the organization of the contents reflects the four major theoretical breakthroughs in uncertainty modeling: advances in spatial object representation, uncertainty modeling for static spatial data to dynamic spatial analyses, uncertainty modeling for spatial data to spatial models, and error description of spatial data to spatial data quality control. Determine Fitness-of-Use for Your Applications Modeling uncertainties is essential for the development of geographic information science. Uncertainties always exist in GIS and are then propagated in the results of any spatial analysis. The book delineates how GIS can be a better tool for decision-making and demonstrates how the methods covered can be used to control the data quality of GIS products.
Read Less
Add this copy of Principles of Modeling Uncertainties in Spatial Data to cart. $79.37, new condition, Sold by GreatBookPrices rated 4.0 out of 5 stars, ships from Columbia, MD, UNITED STATES, published 2020 by CRC Press.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
New. Intended for professional and scholarly audience. In Stock. 100% Money Back Guarantee. Brand New, Perfect Condition, allow 4-14 business days for standard shipping. To Alaska, Hawaii, U.S. protectorate, P.O. box, and APO/FPO addresses allow 4-28 business days for Standard shipping. No expedited shipping. All orders placed with expedited shipping will be cancelled. Over 3, 000, 000 happy customers.
Add this copy of Principles of Modeling Uncertainties in Spatial Data to cart. $79.38, new condition, Sold by Booksplease rated 4.0 out of 5 stars, ships from Southport, MERSEYSIDE, UNITED KINGDOM, published 2020 by CRC Press.
Add this copy of Principles of Modeling Uncertainties in Spatial Data to cart. $99.95, very good condition, Sold by Salish Sea Books rated 4.0 out of 5 stars, ships from Bellingham, WA, UNITED STATES, published 2009 by CRC Press.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
Very Good; Hardcover; Light wear to the covers; Unblemished textblock edges; The endpapers and all text pages are clean and unmarked; The binding is excellent with a straight spine; This book will be stored and delivered in a sturdy cardboard box with foam padding; Medium Format (8.5Äù Äì 9.75Äù tall); Dark gray covers with title in white lettering; 2009, CRC Press; 432 pages; "Principles of Modeling Uncertainties in Spatial Data and Spatial Analyses, " by Wenzhong Shi.