The author considers semilinear parabolic equations of the form $u_t=u_xx f(u),\quad x\in \mathbb R,t>0,$ where $f$ a $C^1$ function. Assuming that $0$ and $\gamma >0$ are constant steady states, the author investigates the large-time behavior of the front-like solutions, that is, solutions $u$ whose initial values $u(x,0)$ are near $\gamma $ for $x\approx -\infty $ and near $0$ for $x\approx \infty $. If the steady states $0$ and $\gamma $ are both stable, the main theorem shows that at large times, the graph of $u(\cdot ...
Read More
The author considers semilinear parabolic equations of the form $u_t=u_xx f(u),\quad x\in \mathbb R,t>0,$ where $f$ a $C^1$ function. Assuming that $0$ and $\gamma >0$ are constant steady states, the author investigates the large-time behavior of the front-like solutions, that is, solutions $u$ whose initial values $u(x,0)$ are near $\gamma $ for $x\approx -\infty $ and near $0$ for $x\approx \infty $. If the steady states $0$ and $\gamma $ are both stable, the main theorem shows that at large times, the graph of $u(\cdot ,t)$ is arbitrarily close to a propagating terrace (a system of stacked traveling fonts). The author proves this result without requiring monotonicity of $u(\cdot ,0)$ or the nondegeneracy of zeros of $f$. The case when one or both of the steady states $0$, $\gamma $ is unstable is considered as well. As a corollary to the author's theorems, he shows that all front-like solutions are quasiconvergent: their $\omega $-limit sets with respect to the locally uniform convergence consist of steady states. In the author's proofs he employs phase plane analysis, intersection comparison (or, zero number) arguments, and a geometric method involving the spatial trajectories $\{(u(x,t),u_x(x,t)):x\in \mathbb R\}$, $t>0$, of the solutions in question.
Read Less
Add this copy of Propagating Terraces and the Dynamics of Front-Like to cart. $116.57, new condition, Sold by GreatBookPrices rated 4.0 out of 5 stars, ships from Columbia, MD, UNITED STATES, published 2020 by American Mathematical Society.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
New. Memoirs of the American Mathematical Society . Intended for professional and scholarly audience. In Stock. 100% Money Back Guarantee. Brand New, Perfect Condition, allow 4-14 business days for standard shipping. To Alaska, Hawaii, U.S. protectorate, P.O. box, and APO/FPO addresses allow 4-28 business days for Standard shipping. No expedited shipping. All orders placed with expedited shipping will be cancelled. Over 3, 000, 000 happy customers.