In full multigrid methods for elliptic difference equations one works on a sequence of meshes where a number of pre- and/or postsmoothing steps are performed on each level. As is well known these methods can converge very fast on problems with a smooth solution and a regular mesh, but the rate of convergence can be severely degraded for problems with unisotropy or discontinuous coefficients unless some form of robust smoother is used. Also problems can arise with the increasingly coarser meshes because for some types of ...
Read More
In full multigrid methods for elliptic difference equations one works on a sequence of meshes where a number of pre- and/or postsmoothing steps are performed on each level. As is well known these methods can converge very fast on problems with a smooth solution and a regular mesh, but the rate of convergence can be severely degraded for problems with unisotropy or discontinuous coefficients unless some form of robust smoother is used. Also problems can arise with the increasingly coarser meshes because for some types of discretization methods, coercivity may be lost on coarse meshes and on massively parallel computers the computation cost of transporting information between computer processors devoted to work on various levels of the mesh can dominate the whole computing time. For discussions about some of these problems, see (11). Here we propose a method that uses only two levels of meshes, the fine and the coarse level, respec- tively, and where the corrector on the coarse level is equal to a new type of preconditioner which uses an algebraic substructuring of the stiffness matrix. It is based on the block matrix tridiagonal structure one gets when the domain is subdivided into strips. This block-tridiagonal form is used to compute an approximate factorization whereby the Schur complements which arise in the recursive factorization are approximated in an indirect way, i. e.
Read Less
Add this copy of Robust Multi-Grid Methods to cart. $56.35, new condition, Sold by Ingram Customer Returns Center rated 5.0 out of 5 stars, ships from NV, USA, published 1989 by Vieweg+teubner Verlag.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
New. Print on demand Text in German. Trade paperback (US). Glued binding. 244 p. Contains: Unspecified, Illustrations, black & white. Notes on Numerical Fluid Mechanics and Multidisciplinary Des, 23.
Add this copy of Robust Multi-Grid Methods to cart. $72.57, new condition, Sold by Ria Christie Books rated 4.0 out of 5 stars, ships from Uxbridge, MIDDLESEX, UNITED KINGDOM, published 1989 by Vieweg+teubner Verlag.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
New. Text in German. Trade paperback (US). Glued binding. 244 p. Contains: Unspecified, Illustrations, black & white. Notes on Numerical Fluid Mechanics and Multidisciplinary Des, 23.
Add this copy of Robust Multi-Grid Methods: Proceedings of the Fourth to cart. $93.66, good condition, Sold by Bonita rated 4.0 out of 5 stars, ships from Santa Clarita, CA, UNITED STATES, published 1989 by Vieweg+Teubner Verlag.