This volume contains recent results about the global dynamics defined by a class of delay differential equations which model basic feedback mechanisms and arise in a variety of applications such as neural networks. The authors describe in detail the geometric structure of a fundamental invariant set, which in special cases is the global attractor, and the asymptotic behavior of solution curves on it. The approach makes use of advanced tools which in recent years have been developed for the investigation of infinite ...
Read More
This volume contains recent results about the global dynamics defined by a class of delay differential equations which model basic feedback mechanisms and arise in a variety of applications such as neural networks. The authors describe in detail the geometric structure of a fundamental invariant set, which in special cases is the global attractor, and the asymptotic behavior of solution curves on it. The approach makes use of advanced tools which in recent years have been developed for the investigation of infinite-dimensional dynamical systems: local invariant manifolds and inclination lemmas for noninvertible maps, Floquet theory for delay differential equations, a priori estimates controlling the growth and decay of solutions with prescribed oscillation frequency, a discrete Lyapunov functional counting zeros, methods to represent invariant sets as graphs, and Poincare-Bendixson techniques for classes of delay differential systems. Several appendices provide the general results needed in the case study, so the presentation is self-contained. Some of the general results are not available elsewhere, specifically on smooth infinite-dimensional centre-stable manifolds.
Read Less
Add this copy of Shape, Smoothness and Invariant Stratification of an to cart. $37.72, like new condition, Sold by Prior Books rated 5.0 out of 5 stars, ships from Cheltenham, GLOUCESTERSHIRE, UNITED KINGDOM, published 1998 by American Mathematical Society, Fields Institute.