The ubiquitous examples of unsteady-state fluid flow pertain to the production or depletion of oil and gas reservoirs. After introductory information about petroleum-bearing formations and fields, reservoirs, and geologic codes, empirical methods for correlating and predicting unsteady-state behavior are presented. This is followed by a more theoretical presentation based on the classical partial differential equations for flow through porous media.Whereas these equations can be simplified for the flow of (compressible) ...
Read More
The ubiquitous examples of unsteady-state fluid flow pertain to the production or depletion of oil and gas reservoirs. After introductory information about petroleum-bearing formations and fields, reservoirs, and geologic codes, empirical methods for correlating and predicting unsteady-state behavior are presented. This is followed by a more theoretical presentation based on the classical partial differential equations for flow through porous media.Whereas these equations can be simplified for the flow of (compressible) fluids, and idealized solutions exist in terms of Fourier series for linear flow and Bessel functions for radial flow, the flow of compressible gases requires computer solutions, read approximations. An analysis of computer solutions indicates, fortuitously, that the unsteady-state behavior can be reproduced by steady-state density or pressure profiles at successive times. This will demark draw down and the transition to long-term depletion for reservoirs with closed outer boundaries.As an alternative, unsteady-state flow may be presented in terms of volume and surface integrals, and the methodology is fully developed with examples furnished. Among other things, permeability and reserves can be estimated from well flow tests.The foregoing leads to an examination of boundary conditions and degrees of freedom and raises arguments that the classical partial differential equations of mathematical physics may not be allowable representations. For so-called open petroleum reservoirs where say water-drive exists, the simplifications based on successive steady-state profiles provide a useful means of representation, which is detailed in the form of material balances. Unsteady-State Fluid Flow provides: - empirical and classical methods for correlating and predicting the unsteady-state behavior of petroleum reservoirs- analysis of unsteady-state behavior, both in terms of the classical partial differential equations, and in terms of volume and surface integrals- simplifications based on successive steady-state profiles which permit application to the depletion of both closed reservoirs and open reservoirs, and serves to distinguish drawdown, transition and long-term depletion performance.
Read Less
Add this copy of Unsteady-State Fluid Flow: Analysis and Applications to to cart. $126.15, good condition, Sold by Phatpocket Limited rated 4.0 out of 5 stars, ships from Waltham Abbey, ESSEX, UNITED KINGDOM, published 1999 by Elsevier Science.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
Good. Ships from UK in 48 hours or less (usually same day). Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. 100% money back guarantee. We are a world class secondhand bookstore based in Hertfordshire, United Kingdom and specialize in high quality textbooks across an enormous variety of subjects. We aim to provide a vast range of textbooks, rare and collectible books at a great price. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. We provide a 100% money back guarantee and are dedicated to providing our customers with the highest standards of service in the bookselling industry.