We are concerned with the nonnegative solutions of $\Delta u = u^2$ in a bounded and smooth domain in $\mathbb{R}^d$. We prove that they are uniquely determined by their fine trace on the boundary as defined in [DK98a], thus answering a major open question of [Dy02]. In this title, a probabilistic formula for a solution in terms of its fine trace and of the Brownian snake is also provided. A major role is played by the solutions which are dominated by a harmonic function in $D$. The latters are called moderate in Dynkin's ...
Read More
We are concerned with the nonnegative solutions of $\Delta u = u^2$ in a bounded and smooth domain in $\mathbb{R}^d$. We prove that they are uniquely determined by their fine trace on the boundary as defined in [DK98a], thus answering a major open question of [Dy02]. In this title, a probabilistic formula for a solution in terms of its fine trace and of the Brownian snake is also provided. A major role is played by the solutions which are dominated by a harmonic function in $D$. The latters are called moderate in Dynkin's terminology. We show that every nonnegative solution of $\Delta u = u^2$ in $D$ is the increasing limit of moderate solutions.
Read Less
Add this copy of Classification and Probabilistic Representation of the to cart. $9.45, good condition, Sold by BookHolders rated 5.0 out of 5 stars, ships from Gambrills, MD, UNITED STATES, published 2004 by American Mathematical Society(RI).