This thesis describes how the rich internal degrees of freedom of molecules can be exploited to construct the first "clock" based on ultracold molecules, rather than atoms. By holding the molecules in an optical lattice trap, the vibrational clock is engineered to have a high oscillation quality factor, facilitating the full characterization of frequency shifts affecting the clock at the hertz level. The prototypical vibrational molecular clock is shown to have a systematic fractional uncertainty at the 14th decimal place, ...
Read More
This thesis describes how the rich internal degrees of freedom of molecules can be exploited to construct the first "clock" based on ultracold molecules, rather than atoms. By holding the molecules in an optical lattice trap, the vibrational clock is engineered to have a high oscillation quality factor, facilitating the full characterization of frequency shifts affecting the clock at the hertz level. The prototypical vibrational molecular clock is shown to have a systematic fractional uncertainty at the 14th decimal place, matching the performance of the earliest optical atomic lattice clocks. As part of this effort, deeply bound strontium dimers are coherently created, and ultracold collisions of these Van der Waals molecules are studied for the first time, revealing inelastic losses at the universal rate. The thesis reports one of the most accurate measurements of a molecule's vibrational transition frequency to date. The molecular clock lays the groundwork for explorations into terahertz metrology, quantum chemistry, and fundamental interactions at atomic length scales.
Read Less
Add this copy of The Strontium Molecular Lattice Clock: Vibrational to cart. $159.69, new condition, Sold by Ingram Customer Returns Center rated 5.0 out of 5 stars, ships from NV, USA, published 2024 by Springer International Publishing AG.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
New. Print on demand Contains: Illustrations, black & white, Illustrations, color. Springer Theses . XV, 161 p. 57 illus., 53 illus. in color. Intended for professional and scholarly audience.
Add this copy of The Strontium Molecular Lattice Clock: Vibrational to cart. $183.14, like new condition, Sold by GreatBookPrices rated 4.0 out of 5 stars, ships from Columbia, MD, UNITED STATES, published 2024 by Springer International Publishing AG.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
Fine. Contains: Illustrations, black & white, Illustrations, color. Springer Theses . XV, 161 p. 57 illus., 53 illus. in color. Intended for professional and scholarly audience. In Stock. 100% Money Back Guarantee. Brand New, Perfect Condition, allow 4-14 business days for standard shipping. To Alaska, Hawaii, U.S. protectorate, P.O. box, and APO/FPO addresses allow 4-28 business days for Standard shipping. No expedited shipping. All orders placed with expedited shipping will be cancelled. Over 3, 000, 000 happy customers.